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Chapter Learning Objectives
● Refresh the solution methods for typical second-order homogeneous and non-

homogeneous differential equations learned in previous math courses,

● Learn to derive homogeneous second-order differential equations for free 
vibration analysis of simple mass-spring system with and without damping 
effects,

● Learn to derive nonhomogeneous second-order differential equations for 
forced vibration analysis of simple mass-spring systems,

● Learn to use the solution of second-order nonhomogeneous differential 
equations to illustrate the resonant vibration of simple mass-spring systems 
and estimate the time for the rupture of the system under in resonant vibration,

● Learn to use the second order nonhomogeneous differential equation to predict 
the amplitudes of the vibrating mass in the situation of near-resonant vibration 
and the physical consequences to the mass-spring systems, and

● Learn the concept of modal analysis of machines and structures and the 
consequence of structural failure under the resonant and near-resonant 
vibration modes. 2



Review Solution Method of Second 
Order, Homogeneous Ordinary 

Differential Equations

We will review the techniques available for solving 
typical second order differential equations at the 
beginning of this chapter. 

The solution methods presented in the subsequent 
sections are generic and effective for engineering  
analysis.
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8.2 Typical form of second-order homogeneous differential equations (p.243)
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 xbu
dx

xdua
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(8.1)

where a and b are constants

The solution of Equation (8.1) u(x) may be obtained by ASSUMING:

u(x) = emx (8.2)

in which m is a constant to be determined by the following procedure:

If the assumed solution u(x) in Equation (8.2) is a valid solution, it must SATISFY 
Equation (8.1). That is:       02
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Substitution of the above expressions into Equation (a) will lead to:
    02  mxmxmx ebemaem

Because emx in the expression cannot be zero (why?), we thus have:

m2 +  am  +  b   =  0 (8.3)

Equation (8.3) is a quadratic equation with unknown “m”, and its 2 solutions for m are from:
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This leads to the following two possible solutions for the function u(x) in Equation (8.1):

  xmxm ececxu 21
21  (8.5)

where c1 and c2 are the TWO arbitrary constants to be determined by TWO specified 
conditions, and m1 and m2 are expressed in Equation (8.4)

Because the constant coefficients a and b in Equation (8.1) are given in the differential 
equation, the values these constants a, b will result in significantly different  forms in the 
solution as shown in Equation (8.5) due to the “square root” parts in the expression of 
m1 and m2 in Equation (8.4). Because square root of negative numbers will lead to a complex 
number in the solution of the differential equation, which requires a special way of expressing it.

We thus need to look into the following 3 possible cases involving relative magnitudes of the 
two coefficients a and b in Equation (8.1).
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Case 1. a2 – 4b > 0:
In such case, we realize that both m1 and m2 are real numbers.  The solution of the 
Equation (8.1) is:

(8.6)
Case 2. a2 - 4b  <  0:
As described earlier, both these roots become complex numbers involving real and imaginary 
parts. The substitution of the m1 and m2 into Equation (8.5) will lead to the following:

(8.7)

in which,             . The complex form of the solution in Equation (8.7) is not always easily 
comprehended and manipulative in engineering analyses, a more commonly used form 
involving trigonometric functions are used instead:

(8.8)

where A and B are arbitrary constants to be determined by given conditions.
The expression in Equation (8.8) may be derived from Equation (8.7) using the Biot relation
that has the form: 
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For a special case with coefficient a = 0 and b is a negative number, the solution of 
Equation (8.1) becomes:

     xbcxbcxu 2sinh2cosh 21  (8.9)

where c1 and c2 are arbitrary constants to be determined by given conditions.
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Case 3. a2 - 4b  =  0:

Recall Equation (8.4):
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The condition a2 – 4b = 0 will thus lead to a situation of:  m1 = m2 = - a/2

Substituting these  m1 and m2 into Equation (8.5) will result in: 
xaxa

cexuoreccxu 2
1

2
21 )()()(




with only ONE term with ONE constant in the solution, which cannot be a complete solution
for a 2nd order differential equation in Equation (8.1).
We will have to find the “missing” solution of u(x) for a second-order differential equation in 
Equation (8.1) by following the procedure:

. Let us try the following additional assumed form of the solution u(x) :

u2(x)  =  V(x) emx (8.10)
where V(x) is an assumed function of x, and it needs to be determined

The assumed second solution in Equation (8.10) must satisfy Equation (8.1)

(b)
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 xbu
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xdua
dx

xudThe Differential equation:

The assumed second solution to Equation (8.1) is: u2(x)  =  V(x) emx , which leads to the 

following equality: 
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After substituting the above expressions into Equation (c), we will get:
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Since m2 +  am  +  b   =  0 in Equation (8.3), and m = m1 = m2 = - a/2 in Equation (b),

0)(
2

2


dx

xVd

so both the 2nd and 3rd term in Equation (8.11) drop out. We thus only have the first term 
To consider in the following special form of a 2nd order differential equation:

The solution of the above differential equation is: V(x) = x after 2 sequential integrations

(8.1)
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The solution V(x) = x leads to the missing second solution of the differential equation in 
Equation (8.1)
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xud

in Case 3 with a2 – 4b = 0 as:
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The general solution of Equation (8.1) with a2-4b=0 thus becomes:

u(x) = u1(x) + u2(x)

or
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where the two arbitrary constants c1 and c2 are determined by the two given conditions 
with Equation (8.1).



Summary on Solutions of 2nd Order Homogeneous Differential Equations

The equation: 0)()()(
2

2

 xbu
dx

xdua
dx

xud (8.1)

with TWO given conditions

Case 1: a2 – 4b > 0:
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Case 2: a2 - 4b  <  0:
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Case 3:  a2 - 4b  =  0:
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The solutions:

where c1, c2, A and B are arbitrary constants to be determined by given conditions

A special case
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Example 8.1 (p.246): Solve the following differential equation:

(a)

Solution:

We have a = 5 and b = 6, by comparing Equation (a) with the typical differential equation in 
Equation (8.1) will lead to:

a2 – 4b = 52 -4x6 = 25 – 24 = 1 > 0  - a Case 1 situation with 
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Consequently, we may use the standard solution in Equation (8.6) for the general solution of 
Equation (a): 
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where c1 and c2 are arbitrary constants to be determined by given conditions
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Example 8.2 (p.246): Solve the following differential equation with given conditions:
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xud (a)

with given conditions: u(0)  =  2 (b)

and 0)(

0


xdx

xdu (c)

Solution:

Again by comparing Equation (a) with the typical differential equation in Equation (8.1), we have: a = 6 and 
b = 9.. Further examining a2 – 4b = 62 – 4x9 = 36 – 36 = 0, leading to special Case 3 in Equation (8.12) for
the solution:
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(d)

Using Equation (b) for Equation (d) will yield c1 = 2, resulting in:     xexcxu 3
22 

Differentiating Equation (e) with condition in Equation (c) will lead to the following result:
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We may thus solve for c2 = 6
Hence the complete solution of Equation (a) is:   xexxu 3312)( 
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8.3 Application of 2nd- Order Homogeneous Differential Equations 
for Free Mechanical Vibration Analysis (p.246)

8.3.1 What is mechanical vibration and resulting consequences?

Mechanical vibration is a form of oscillatory motion of a solid, a structure, a machine, or 
a vehicle induced by mechanical means.  

The amount of movement in these solids and structures is called “amplitude”.  The 
amplitudes of vibrating solids vary with time.  Such variations may be either regularly or in 
random fashions.  

Oscillatory motion of solids with their amplitudes vary with fixed time interval called 
“period”, and the reciprocal of the period is the “frequency” of the vibratory motions.

Consequences of mechanical vibrations:

It can be immediate, such as in the case of resonant vibration with rapid increase of 
magnitudes of vibration, resulting  in immediate and unexpected  catastrophically 
structural failures, or it can induce damages accumulated by long-term vibrations with 
low amplitudes. The latter form of vibrations may result in the failure of the machine or 
structure due to fatigue of the materials that make the machines or structures.
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8.3.2 Common Sources for Mechanical Vibrations:

(1) Application of time-varying mechanical forces or pressure.
(2) Fluid induced vibrations due to intermittent forces of wind, tidal waves, etc.
(3) Application of pressures associated with acoustics and ultrasonic waves.
(4) Random movements of supports, for example, seismic forces.
(5) Application of thermal, magnetic forces, etc.

8.3.3 Common types of Mechanical Vibrations:

0
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(1) With constant amplitudes and frequencies:
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(2) With variable amplitudes but constant 
frequencies:

0
Time, t

Am
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de

(3) With random amplitudes and frequencies:

14



Mechanical vibrations, in the design of mechanical systems, are normally undesirable 
occurrences, and engineers would normally attempt to either reduce it to the minimum 
appearance, or eliminate it completely.

“Vibration Isolators” are commonly designed and used to minimize vibration of mechanical
systems, such as shown in the following cases:

Design of vibration isolators requires analyses to quantify the amplitudes and frequencies of the 
vibratory motion of the mechanical system – a process called “mechanical vibration analysis”

Benches for high-
precision instruments

Vibration isolators

Suspension of heavy-
duty truck

Vibration isolators

Mitigation of Mechanical Vibrations in mechanical systems:
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8.3.4 The three types of mechanical vibration analyses by mechanical engineers (p.247):

8.3.4.1 Free vibration analysis:
The mechanical system (or a machine) is set to vibrate from its initial equilibrium condition
by an instantaneous disturbance (either in the form of a force or a displacement). 
This disturbance does not exist after the mass is set to vibrate.

There are two types of free vibrations:

Mass

Springs

● Damped vibration system:

Mass

Spring &
Damper

8.3.4.3 Forced vibration analysis (p.248):
Vibration of the mechanical system is induced by cyclic loading at all times.

● Simple mass-spring system:

Mass

Mechanical vibration requires: Mass, spring force (elasticity), damping factor and initiator

Modal analysis
To identify natural frequencies of a solid machine at various possible  modes of vibration

Forces induced by 
the rugged terrain

16

and



8.4 Physical Modeling of Mechanical Vibrations: Simple mass-spring system (p. 249)

The simplest model for mechanical vibration analysis is a MASS-SPRING system as illustrated in Figure 8.5: 

Mass
m

Mass
m

k

k

with m = mass, and 
k = spring constant

● k is defined as the amount  of force 
required to deflect a certain amount 
of the spring = F/δ

● So, k has a unit of lbf/in or N/m
● k is a property of a given spring Applied force

F

Induced
Deflection

δ

● The spring in this system is to support the mass 
● Springs in the system need not to be “coil” springs
● Any ELASTIC solid support can be viewed as a “spring”

=

Mass

Spring:
Cable
or rod

Mass

Spring:
Elastic beam

Springs:
Support Structure

Masses:
Masses of the

bridge structure

Simple Mass-Spring Systems

Complex System

Minimum requirement for Mechanical vibration:  a MASS attached to an ELASTIC SUPPORT

17

Figure 8.5 Simple mass-spring system



A Case of Simple Mass-Spring Systems in Free Vibration

The physical phenomena of solids in free vibration is that the vibration of the solid is 
induced by an instantaneous disturbance either in the form of a force or deformation
of the supporting spring, such as illustrated in the vibration of a vehicle induced by its
suspension system:.

This initial disturbance does not 
exist after the inception of 
vibration of the solid mass.

Mass
m

Mass
m

k

k
It takes a MASS and SPRING (or elastic) support
to get the mass to vibrate

Mass
m

Spring Constant, kMotion of
The vehicle

This disturbance (a “blip” on 
Road surface) causes the mass to begin vibration, 
and continue to vibrate afterward 

18
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m
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(a) Free-hung spring

(b) Statically stretched
spring

(c) A vibrating mass at time t

8.4 Mathematical Formulation of Simple Mass-Spring Systems in Free Vibration (p.249)

Mass
m

Mass
m

k

k
As we mentioned in previous occasions: “The simplest physical model 
for mechanical vibration analysis involves a MASS and a SPRING
(or an elastic support) as illustrated in Figure 8.5

Mathematical Formulation for Free Vibration of a mass:

(1) We will Begins with:

(2) The free-hung spring deflects
upon attaching a mass m:

(3) A small instantaneous “push-down” is applied to the mass
and release quickly.. 
We can expect the mass to bounce up & down passing
its initial equilibrium position. Due to simultaneous effects of
the recoil of the spring and the dynamic forces associated
with the motion of the mass in variable velocities.

Initial equilibrium position
Initial equilibrium 
positionwith a mass at 
time zero

● Sign convention:
+ve downward
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(a) Free-hung spring

(b) Statically stretched
spring

(c) A vibrating mass at time t

Mathematical formulation of a vibrating mass 
in a Mass-Spring System

m

Spring force
Fs = kh

Weight
W = mg

m

Spring force:
Fs = k[h + y(t)]

Weight
W = mg

Displacement
+y(t):

Position at time t

Dynamic (Inertia)
Force, F(t)

Based on an assumption with no air resistance against
the motion off the mass and spring. Formulation is on 

the equilibrium of of both static and dynamic forces. 

Static force
Equilibrium

Dynamic forcee
Equilibrium at time t

0  sy FWF

Forces: Weight (W); Spring force (Fs)
Dynamic force, F(t):

+y

Equilibrium of forces acting on the mass at given time t 
satisfies the Newton’s 1st Law:

    0WFtF s

But since we have the dynamic force to be: 2

2 )()(
dt

tydmtF 

and the spring force to be Fs = k[h + y(t)], we should have:

  0)()(
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dt

tydm

But mg = kh from the static equilibrium condition,and  after substituting it into the above equation, we have the
following 2nd order differential equation for the instantaneous position y(t) for the vibrating mass:

0)()(
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tydm (8.14)
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Mass
m

Mass
m

k

k

Solution of differential equation (8.14) for simple mass-spring vibration

y

y

y(t)

y(t)

0)()(
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 tyk
dt

tydm (8.14)

where y(t) = instantaneous position of the mass            

Re-writing the above equation in the following form:

    02

2

 ty
m
k

dt
tyd (8.14a)

The solution of Equation (8.14) can be obtained by comparing Equation (8.14a) with the typical 2nd

order differential equation in Equation (8.1):
0)()()(
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 xbu
dx
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xud
(8.1)

We will find that a = 0 and b = k/m after comparing Eqs..(8.14a) and (8.1). The solution of Equation (8.1)
depends on the discriminator:   a2 – 4b. Since k = spring constant which is a property of the spring and 
m = mass of the vibrating solid, the equivalent coefficient b is a +ve real number. Consequently, we will
have:   a2 – 4b = 0 – 4(k/m) < 0, which is a Case 2 for the solution, as shown in Equation(8.8), or

t
m
kSinBt

m
kCosAty )( (8.15)

where A, B are arbitrary constants to be determined by given conditions
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Mass
m

Mass
m

k

k

Physical senses of solution of differential equation (8.14) for simple mass-spring vibration:

y

y
y(t)

y(t)

0)()(
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 tyk
dt

tydm
(8.14)

where y(t) = instantaneous position of the mass            

Upon re-writing the equation in the form:
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dt
tyd (8.14a)

The general solution of Equation (8.14) is:

tSinctCoscty oo  21)(  (8.16)

where c1 and c2 are arbitrary constants to be determined by given conditions, and 

m
k

o  (8.16a)

is called the “circular”, or “angular frequency” of the mass-spring vibration system. Often, it represents the
“natural frequency” of the simple mass-spring system. The unit is rad/s.

Corresponding to the angular frequency ωo is the real frequency of the vibration in the following expression::

m
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2
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2
 (8.17)
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The differential equation for the instantaneous position of the solid mass, y(t) satisfies the 
following Equation (8.14):



Graphical representation of free-vibration of simple mass-spring systems (p.252):

Mass
m

Mass
m

k

k

y

y(t)

y(t)

0
Time, t
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itu
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, y
(t)

m
k

Period 2


tSinctCoscty oo  21)( 

y

The solution y(t)  consists of cosine and sine functions 
of variable t (the time)

So, it is an oscillatory function, oscillating about the 
“zero-time” axis, with the amplitudes of vibration y(t)
illustrated  in Figure 8.8:

y(0) = Initial
deflection of
the spring

Combination of cosine and sine functions

The mathematical solution for the instantaneous position of the vibrating mass can be obtained by 
the following expression:

(8.16)

Max. amplitude

The frequency of vibration: f = 1/period 23

Figure 8.8 The oscillatory motion of the solid mass in a simple mass-spring system



Example 8.3 (p.253):  An unexpected case for engineers to consider in their design and operation of 
an unloading process of a heavy machine.

Description of the problem:
A truck is unloading a heavy machine weighing 
800 lbf by a crane as illustrated in Figure 8.10.
The cable used to lift the freight was suddenly 
seized (jammed) at time t from a descending 
velocity of v = 20 ft/min

800 lbf

Elastic cable with
k = 6000 lbf/in

v = 20 ft/min

One may expect the heavy machine undergoing 
An “up-down-up” vibration after such seizure. 

Determine the following:
(A) The frequency of vibration of the machine that is seized from its descending
(B) The maximum tension in the cable induced by the vibrating machine, 
(C) The maximum stress in the cable if the stranded steel cable is 0.5 inch in diameter 
(D) Would the cable break if its ultimate tensile strength (UTS) of the cable material is 40,000 psi?

Solution:

Because the machine is attached to an 
elastic cable, which has the same characteristics 
as a “spring,” we may simulate this situation 
to a simple mass-spring systems as:

Elastic 
Cable

Spring

Spring
constant

k = 6000 lb/in
Mass:

800/32.2
slug

The frequency and amplitudes of the vibrating machine can thus be evaluated by the expressions
derived for the simple mass-spring system.

24

Figure 8.10



(a) The frequency of vibration of the machine is given in Equation (8.17)..  

The circular frequency is:  

sradx
m
k

o /83.53
2.32/800

126000


which leads to the frequency to be:

scyclesf o /57.8
2





The maximum tension in the cable is determined with its maximum total elongation
during the vibratory motion of the machine after the cable is seized.  
To get the amplitude of the vibrating machine, we need to solve a differential equation
that has the form as shown in Equation (8.14) satisfying the appropriate conditions.
The following formulation is obtained:  

(b) The maximum tension in the cable:

The differential equation: 0)()(
2

2

 tyk
dt

tydm (8.18)

With given conditions:        y(0) = 0 and   sftft
dt

tdy

t

/3333.0min/20
0




(a)

Initial velocity (velocity at the time of seizure)
25

Example 8.3 – Cont’d



The solution of Equation (8.14) is: tSinctCoscty oo  21)(  (8.16)

or tSinctCoscty 83.5383.53)( 21  (b)

with ωo = 53.83 rad/s as computed in Part (a) of the solution.

The arbitrary constants c1 and c2 in Equation (b) can be determined by using
the given conditions in Equation (a), with c1 = 0 and c2 = 0.0062 in Equation (b).

We thus have the amplitude of the vibrating machine in the following form:

tSinty 83.530062.0)(  (c)

from which, we obtain the maximum amplitude from Equation (c) to be:
ymax = 0.0062 ft

The corresponding maximum tension in the cable is:

fm lbxxWykT 12468000062.0)126000(max 

(C) The equivalent maximum stress in the cable is obtained by the following expression: 
with A being the cross-sectional area of the steel cable:

 
psi

A
Tm 6346

4
5.0

1246
2max 




(d) Interpretation of the analytical result:
The cable will not break because the maximum induced stress σmax = 6346 psi << uts
where uts is the ultimate tensile strength of the cable material = 40,000 psi.
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where W is the weight of the machine



On the Application of Simple Mass-Spring Systems in Free Vibration Analysis:
We have demonstrated that simple mass-spring systems are used to derive comprehensive 
math 
models for free vibration of solids. It has demonstrated the principle of free vibration by two 
practical problems described in Example 8.3 and the vibration of a vehicle chassis when it is hit 
by  a small blip on the road on which it cruises.  Both these applications are illustrated below:

tSinctCoscty oo  21)( 

0
Time, t

Am
pl

itu
de

, y
(t)

m
k

Period 2


The mass oscillates FOREVER!!

.
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Deficiency of simple mass-spring systems: Despite the simplicity of the math model as 
shown in Equation (8.14), and its general  
solution in Equation (8.15), the analytical 
results as illustrated in Figure 8.8 bears
little reality with the amount of oscillatory 
the amplitudes of the vibrating solids never 
decay-a phenomenon that cannot be realistic.

Figure 8.8 Graphic representation of analytical results
of a simple mass-spring system

●Proper modifications to the simple mass-spring
model must be made to make it more    
realistic. 



8.5 Simple Damped Mass-Spring Systems in Free Vibration (p.254)

Question: What makes free-vibration of a mass-spring system to stop in reality??
Answer: It is the “damping effect” that makes the free vibration of mass-spring system 

to stop after soke time t.

Conceivable Sources for Damping in Mechanical Vibrations:
● Resistance by the air surrounding the vibrating mass – hard to model analytically
● Internal friction of the spring during deformations – a material science topic, hard to model

So,  “Damped” free vibration of solids is a more realistic phenomenon

8.5.1 A practical physical model of Damped Mass-Spring Systems in free vibration analysis:

Because damping of a simple mass-spring vibration system is induced by the resistance of the surrounding air 
to the moving mass, we can use an “air cylinder” with adjustable air vent to regulate the air resistance 
to the moving mass such illustrated in
Figure 8.11 (a):

Mass Initial position at time t =0

at time t1

at time t2

Damper: air cylinder

Air Piston

Adjustable
opening for vent

Vibrating mass

up

down

Idealization
of a Damper

A “Dashpot”

28Figure 8.11 (a)



Physical modeling of Damped Mass-Spring Systems in Free Vibration Analysis (p.255)

Mass, m

Damper-
a dashpot:

c

Spring:
k

+y(t)

Real-world application with “Coilovers”** in vehicle suspension

Coil spring

Dashpot for
damping

The damper in the physical model is characterized by a damping coefficient c – similar to the situation
of a spring characterized by spring constant k. 

The damping coefficient c is specified by manufacturer of the damper (or a dashpot)

Because the corresponding damping force is related to the air resistance to the movement of the mass, 
and the air resistance R is proportional to the velocity of the moving mass. Mathematically, we have: 

 








dt
tdymassmovingofVelocitytR )(

where y(t) relates to the distance the mass travels to and from its initial equilibrium position,

Consequently, the damping force R(t) has the form:

dt
tdyctR )()(  (8.19)

in which c = damping coefficient, normally supplied by the vendor of the damper.
29

** A “coilover” consists of a dashpot surrounded by a coil spring

Figure 8.11(b)  Physical model of damped vibration



8.5.2 Mathematical modeling of Damped Mass-Spring Systems in Free Vibration Analysis

Mass, m

Damper-
a dashpot:

c

Spring:
k

+y(t)

The mathematical expression of this physical model 
can be obtained by following similar procedure for
free vibration of  simple mass-spring system, but with 
the inclusion of the additional damping force as:

Mass, m

Damping force:

dt
tdyctR )()( 

Spring force:
Fs = k [h + y(t)]

Dynamic force:

2

2 )()(
dt

tydmtF 

Weight:
W = mg

+y(t)

+ve direction of motion

By Newton’s 1st Law in dynamic equilibrium at time t:

0)()(   WFtRtFF sy

0)()()(
2

2

 mgkhtyk
dt

tdyc
dt

tydm

or 0)()()(
2

2

 tyk
dt

tdyc
dt

tydm (8.20)

Equation (8.20) is a 2nd order homogeneous differential equation for the instantaneous position
of the vibrating mass, y(t) 30



0)()()(
2

2

 tyk
dt

tdyc
dt

tydm

Solution of Eq. (8.20) for Damped Mass-Spring Systems in Free Vibration Analysis

(8.20)

If we re-write the above equation in a different form:

      02

2

 ty
m
k

dt
tdy

m
c

dt
tyd (8.20a)

Now, if we compare Equation (8.20a) and the typical 2nd order homogeneous differential equation 
in Equation (8.1):

0)()()(
2

2

 xbu
dx

xdua
dx

xud (8.1)

We may obtain the solutions of Equation (8.20) depends on the signs of the discriminators (a2 – 4b) or 
(c/m)2 – 4(k/m) > 0 for Case1, or =0 for Case 2, or <0 ifor Case 3. Effectively, we will look for all the 3 
possible cases in the following cases:

we will have equivalences: a = c/m and b = k/m after comparing terms in Equations (8.20a) and (8.1)

Case 1: (c/m)2 – 4(k/m) >0, or c2-4mk > 0

Case 2: (c/m)2 – 4(k/m) = 0 or c2-4mk = 0

Case 3: (c/m)2 – 4(k/m) < 0 or c2-4mk < 0

31



Case 1:    c2 - 4mk > 0 (Over-damping situation):
The solution in Equation (8.6) is applied:

   tttmc BeeAety   2/)( (8.23)

where
 mmkc 2/42 

A and B are arbitrary constants to be determined by two given conditions, and

Graphical representation of the instantaneous position of the vibrating mass are: 

(1)(2)

(3)
(3)

(1)

(2)

(3)t

t

y(t) y(t)
(1) +ve initial velocity
(2) Zero initial velocity
(3) -ve initial velocity

(a) With +ve initial displacement, y0 (b) With negligible initial displacement

y0

Observations:
● There is no oscillatory motion of the mass,.
● There can be an initial increase in the displacement of the mass, 

followed by continuous decays in the amplitudes in the vibration, and
● The amplitudes of vibration usually decays quickly in time.

● It is a desirable situation in abating (or mitigating) mechanical vibration

8.5.3 Solution of Eq. (8.20) for Damped Mass-Spring Systems in Free Vibration Analysis:
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Case 2:    c2 – 4mk = 0 (Critical damping):
Solution of Equation (8.20) is in the form of Equation (8.12):

 tBAety
t

m
c










2)( (8.24)

Graphical representation of Equation (8.24) is:

(1)

(2)

(3)

(3)
0

t

y(t) y(t)

yo

0 t

(1)

(2)

(3)

(1) With +ve initial velocity
(2) With zero initial velocity
(3) With –ve initial velocity

(a) With +ve initial displacement (b) With negligible initial displacement

Observations:

● There is no oscillatory motion of the mass by theory,
● Amplitudes reduce with time, but take longer to “die down”

than in the case of “over-damping,” and
● May become an unstable situation of vibration. 

8.5.3 Solution of Eq. (8.20) for Damped Mass-Spring Systems in Free Vibration Analysis:-Cont’d
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Case 3: c2 – 4mk < 0 ((Under damping):

Solution of Equation (8.20) in this case is expressed in Equation (8.8)

 tSinBtCosAety
t

m
c










2)( (8.25)

where  mcmk 2/4 2 and A, B are arbitrary constants

Graphical representation of Equation (8.25) is:
y(t)

t0

Observations:

● The only case of damped vibration that has oscillatory motion of the mass,
● The amplitudes of each oscillatory motion of the mass reduces continuously

but they take a long time to “die down,” and
● “Under damping” is thus the least desirable situation in machine design.

8.5.3 Solution of Eq. (8.20) for Damped Mass-Spring Systems in Free Vibration Analysis:-Cont’d
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8.6 Solution Method of Nonhomogeneous Second-Order 
Ordinary Differential Equations (p.258)

We have learned from Chapter 7 on the efforts required in solving homogeneous and 
nonhomogeneous first order differential equations, and also on the complexity of the 
solutions for nonhomogeneous differential equations.

Unlike what we learned in that chapter, there is no fix rule or particular solution method 
to follow in solving nonhomogeneous second order differential equations. What we will 
learn from this Chapter is a general guideline for the solution of this type of differential 
equations.

Non-homogeneous second order differential equations have broad applications in 
engineering analysis; however, we will focus on its applications in the following three 
areas in: 

(1) Applications in forced vibration analysis. 
(2) Application in “resonant vibration Analysis” of solid machine structures that often results in 

devastating structural failures, and 
(3) Application in “near resonant vibration analysis.” This type of vibration usually takes long 

time for structural failure. But structural failure is mainly caused by the “fatigue” of the 
materials.
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)()()()(
2

2

xgxbu
dx

xdua
dx

xud


8.6.1 Typical differential equation and solution:

(8.26)

The nonhomogeneous term

Solution of Equation (8.26) consists of TWO components:

Solution u(x) Complementary
solution uh(x)

Particular
solution up(x)

+=

u(x) = uh(x) + up(x) (8.27)

The complementary solution uh(x) is the solution of the homogeneous part of 
Equation (8.26), i.e.:

0)(
)()(

2

2

 xbu
dx

xdu
a

dx
xud

h
hh (8.28)

Equation (8.28) is similar to the typical 2nd order homogeneous differential equation
in Equation (8.1).Solutions are available in Equation (8.6) for Case 1 with a2 -4b>0; 
Equation (8.7) for Case 2 with a2-4b<0; and Equation (8.12) for Case 3 with a2-4b = 0 
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8.6.3 Determination of particular solution up(x) (p.259)

There is NO fixed rule for deriving up(x). However, the following guideline may be used to 
determine up(x) by ASSUMING a function that is SIMILAR to the nonhomogeneous part 
of the differential equation, e.g., g(x) in Equation (8.26):

g(x)
Given in Eq. (8.26) with specified

coefficients (a,b,c and d)

up(x)
Assumed solution with unknown coefficients, 

(Ao, A1, A2 A3 and A4, or A,B, C,D) need to be 
determined

Polynomial functions of order n:
g(x) = ax4 + b x2 + cx + d  (order 4)

Polynomial functions of order n:
up(x) = Ao + A1x +A2x2+A3x3 + A4x4     (order 4)

Trigonometric functions:
g(x) = a sine or cosine function, or  

g(x) = tan(αx) ,or cot(αx),or
g(x) = sec(αx), or csc(αx)

with Conjugate trigonometric functions:
up (x) = A cos(αx) + B sin(αx)
up(x) = Atan(αx) + Bcot(αx),or
up(x) = Asec(αx)+Bcsc(αx)

Exponential functions:
g(x) = aebx

Exponential functions:
up(x) = Aebx

Combination of functions:
g(x) = ax3 + bcos(αx) + ce-dx

Combination of similar functions:
up(x) = (Ax3+Bx2+Cx+D) 

+ [Ecos(αx) + Fsin(αx)] + Ge-dx

The unknown coefficients in the assumed up(x) are determined by comparing terms 
after their substituting into Equation (8.26), as shown in the next slide: 37

Table 8.1 Guidelines for choosing assumed forms of up(x)



The coefficients in assumed up(x) are determined by comparing terms after its substitution 
into the entire differential equation in Equation (8.26): 

)()(
)()(

2

2

xgxbu
dx

xdu
a

dx
xud

p
pp  (8.29)

Your assumed up(x)

Self studies on Examples (8.4), (8.5) and (8.7). We will use Example 8.6 to demonstrate
the solution of the nonhomogeneous differential equation using the proposed method, and 
A special form of up(x) to solve special case of nonhomogeneous differential equations.

Example 8.6 (p.262): Solve the following 2nd order nonhomogeneous differential equation::

xSinxy
dx

xdy
dx

xyd 2)(2)()(
2

2

 (a)

Equation (a) is a nonhomogeneous equation. So its solution takes the following forms as in 
Equation (8.27):

y(x) = yh(x) + yp(x) (b)

The complementary solution yh(x) in Equation (b) is obtained from the homogeneous part 
of Equation (a) as:

0)(2
)()(

2

2

 xy
dx

xdy
dx

xyd
h

hh (c)

The solution of Equation (c) is by Case 1 with a2-4b>0, or:
xx

h ececxy 2
21)(   (d)

Solution:
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To determine the particular solution yp(x) following the guidelines in Table 8.1:

The nonhomogeneous part in Equation (a) with g(x) = sin 2x. Consequently, we will 
assumed yp(x) to include BOTH trigonometric functions sine and cosine functions: 

yp(x) = A Sin 2x + B Cos 2x (e)

which leads to:

 
xBSinxACos

dt
xdyp 2222 

 
xCosBxSinA

dt
xyd p 24242

2

and

Substituting yp(x) in Equation (e) and its derivatives into Equation (a):

(- 4A Sin 2x – 4B Cos 2x) –
(2A Cos 2x – 2BSin 2x) –

-2(A Sin 2x + B Cos 2x) = Sin 2x
After re-arranging terms, we get:

g(x)

By comparing the coefficients of the terms on both sides of the above expression, we get:

6A = 2B = 1 and  – 2A – 6B = 0, from which we solve for: A = - 3/20 and B = 1/20

(- 6A + 2B) Sin 2x + (-6B – 2A) Cos 2x = Sin 2x.







   xCosxSinececxyxyxy xx

ph 2
20
12

20
3)()()( 2

21

The particular solution is thus:   yp(x) = -3 Sin2x/20 + Cos 2x/20, which leads to the solution of the
Differential equation in Equation (a) to be:

      xSinxy
dx

xdy
dx

xyd
p

pp 222

2



where c1 and c2 are arbitrary constants to be determined by the given specified  conditions
39
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8.6.4 Special Case in Determining Particular Solution up(x) (p.263)

These cases involve at least one term in the complementary solution of the DE,i.e., uh(x)
coincides with the term of the function in the nonhomogeneous part of the DE, i.e. g(x).

Example of the special case – Example 8.8:

xSinxu
dx

xud 22)(4)(
2

2

 (a)

Following the usual procedure, we will get the complementary solution first by solving:

0)(4
)(

2

2

 xu
dx

xud
h

h (b)

with a solution: uh(x) =  c1 Cos 2x  +  c2 Sin 2x (c)
where c1 and c2 are arbitrary constants

We realize the 2nd term in the solution of uh(x) in Equation (c) is of the similiar form of g(x) = 2 sin2x 
in Equation (a). So, it is a special case.  We will see from the following derivation of up(x) by the
“normal” way will lead us to NOWHERE as we will see form the following derivation!

Since the nonhomogeneous part of Equation (a) is g(x) = 2 sin2x – a trigonometric function, the “normal”
way would having us assuming the particular solution up(x) in the form:

up(x) = A Cos 2x + B Sin 2x (d)

Substituting the up(x) in Equation (d) into Equation (a) will lead to the following ambiguous equality:
    xSinxSinxCos 222020 

There is no way can we solve for the coefficients A and B in Equation (d). Another way of obtaining 
up(x) is needed

The differential equation:
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Particular solution for special cases:
Let us modify the assumed up(x) in Equation (d) by adding “x” in the assumed up(x) for the special case:

up(x) = x (A Cos 2x + B Sin 2x) (e)

Upon substituting the above modified up(x) in Equation (e) and the derivatives in Equations (f) and (g)
into Equation (a), we will have:

Now if we follow the usual procedure with the modified up(x) in Equation (e) to  Equation (a),
we need first to derive the following derivatives as:

     xSinxxCosBxCosxxSinA
dx

xdup 222222  (f)

and    
 xCosxCosxxSinB

xSinxSinxxCosA
dx

xud p

222224

2222242

2




(g)

(-4Ax Cos 2x – 2A Sin 2x – 2A Sin 2x – 4Bx Sin2x + 2B Cos 2x + 2B Cos 2x)
+ (4Ax Cos 2x + 4Bx Sin 2x)   =   2 Sin 2x

from which we get:  A = -1/2 and B = 0, which lead to: xCosxxu p 2
2

)(  (h)

The complete general solution of Equation (a) is thus possible by a summation of uh(x) in Equation (c) 
and the up(x) in Equation (h) to give:

xCosxxSincxCoscxuxuxu ph 2
2

22)()()( 21 

8.6.4 Special Case in Determining Particular Solution up(x) – Cont’d
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8.7 Application of 2nd Order Nonhomogeneous Differential Equations to 
Forced Vibration Analysis

Mass

(A) By irregular forces from rough road surface:

B). By cyclic forces:

We have learned from Section 8.3.4.3 on the definition of forced vibration of machine structures. 
There are generally two types of forces involved in this kind of forced vibrations as illustrated 
below. We will focus on the latter type of forces: the cyclic forces with frequencies designated 
by ω rad/sec because this is the kind of forces that would induce catastrophic structural failures. 

42
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Vehicle on 
Suspension
systems

Cyclic forces in a stamping machine
Cyclic aerodynamic forces
by propellers

Cyclic forces by
cam-spring forces



The simplest physical model for forced vibration is a simple mass-spring system 
subjected to an exciting force F(t) where t ( time variable):

Mass
m

k

Excitation force
F(t)

Mass
m

k

y = 0

y(t)

Excitation force
F(t)

Mass
m

k [h + y(t)]

W = mg

F(t)

2

2 )(
dt

tydmFd 

Structure mass

Elastic support:
Structures made
of elastic materials

Applied forces:

The mathematical model for the above physical arrangement can be derived by using Newton’s First law:

0)()]([0   tFWtyhkFF dy

with 
 
2

2

dt
tydmFd  from Newton’s 2nd law

The differential equation for the instantaneous amplitudes of the vibrating mass under the influence
of force F(t) becomes:

)()()(
2

2

tFtky
dt

tydm  (8.31)

Equation (8.31) is a nonhomogeneous 2nd order differential equation

8.7 Forced Vibration Analysis
8.7.1 Derivation of differential equation (p.264):
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Forced Vibration of a Mass-Spring System subject to Cyclic Forces with frequency ω:

If we assume the applied force F(t) in Equation (8.31) is of cyclic nature following a cosine 
function, such as:

F(t) = Fo Cos ωt (8.32)

where Fo = maximum magnitude of the force, and ω is the circular frequency of the 
applied cyclic force that can be graphically displayed in Figure 8.17:

:

Fo

F(t)

t
π/2 π 2π3π/20

Upon substituting the expression of F(t) in Equation (8.32) into Equation (8.31), we have the 
governing differential equation for the amplitudes of the vibrating mass as:

tCosFtyk
dt

tydm 02

2

)()(
 (8.33)

8.7 Forced Vibration Analysis – Cont’d
8.7.1 Derivation of differential equation:
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Solution of Equation (8.33): tCosFtyk
dt

tydm 02

2

)()(


Equation (8.33b) is a non-homogeneous 2nd order differential equation, and its solution is: 

y(t) = yh(t) + yp(t)

The complementary solution yh(t) is obtained from the homogeneous part of Equation (8.33b):

or in a different form:     tCos
m
Fty

m
k

dt
tyd o 2

2

or in yet another form:     tCos
m
Fty

dt
tyd o

o   2
2

2

(8.33a)

(8.33b)

in which
m
k

0 is the circular frequency of the mass-spring system  in Section 8.4.1
(NOTE: ω0 is an inherent property of the mass-spring 
“structure”)                                               

    02
02

2

 ty
dt

tyd
h

h 

The general solution of Equation (8.33c) is:

  tSinctCoscty ooh  21  (4.33d)

where c1 and c2 are arbitrary constants to be determined by given conditions of 
the problem.

8.7 Forced Vibration Analysis – Cont’d
8.7.1 Derivation of differential equation:

(8.33c)

45



The form of particular solution of Equation (8.33b) can be obtained by following the guideline in Table 8.1 as:

yp(t) = A Cos ωt + B Sin ωt (8.34)

We will have:
 

tCosBtSinA
dt

tdyp  
  tSinBtCosA

dt
tyd  22

2

2

and

Upon substituting the above into Equation (8.33b) with y(t) = yp(t):

    tCos
m
Fty

dt
tyd

p
p  02

02

2



We have:     tCos
m
FtSinBtCosAtSinBtCosA  02

0
22 

Upon comparing terms on both sides of the above equality, we will get the following relationshops:

 
m
FAA 02

0
2   for the terms associated with Cosωt, leading to: 

)( 2
0

2
0

 


m
FA

and for the term of Sinωt:   02
0

2  B leading to:  B  =  0 

Thus, we have:   tCos
m

Fty
o

p 
 )( 22

0




The complete solution of Equation (8.33b) for forced vibration by cyclic force F(t) = Fo Cosωt is:

    tCos
m

FtSinctCoscty 


 22
0

0
0201 
 (8.35)

where c1 and c2 are the arbitrary constants determined by specified initial conditions
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HENCE, for the case of resonant vibration in the situation with:

The frequency of the excitation (applied) force (ω)
= The circular frequency (NATURAL FREQUENCY) of the Mass- spring system (ω0)

requires a special solution method as will be presented in the next slide:

We realize the solution on the amplitudes of the vibrating mass 
in a forced vibration systems is:

    tCos
m

FtSinctCoscty 


 22
0

0
0201 


Mass
m

k

Applied force
F(t) = FoCosωt

Fo

F(t)

t
π/2 π 2π3π/20

(8.35)

Question: What will happen in the special case of: ω = ω0?

We will observe that the amplitude y(t) in Equation (8.35) 
turn into an unrealistic situation: 

which is not physically possible!!!
So, the solution in Equation (8.35) is NOT realistic!! 
And an alternative solution needs to be derived for 
the case of ω = ω0

Meaning the amplitude of vibration becomes
infinity under any case at all times

It means that the frequency of the applied cyclic force (ω) =
the inherent natural frequency of the structure (ω0)
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8.7.2 The Resonant Vibration Analysis (p.266)

Because we have the situation with ω = ω0, Equation (8.33) now can be expressed in the 
Following form: 

tCosFtyk
dt

tydm 002

2

)()(  (a)

We may express the complementary solution of Equation (a) as we did before:

  tSinctCoscty ooh  21 

We notice that the same term of  “Cosω0t” appears in the above solution as in the non-
homogeneous part (on the right-hand side) of Equation (8.33b). Consequently, the particular 
solution of Equation (8.33b) for the case of ω=ωo fits the “special case” category for the 
solution yp(t).. 

Let us now assume the particular solution to be in a special case (in Section 8.6.4) to be:

yp(t) = t (A Cos ω0t + B Sin ω0t)

By following the same procedure as we used in solving non-homogeneous Equation (a) to get:

A = 0          and 
0

0

2 m
FB 

Hence tSint
m
Ftyp 0

0

0

2
)( 



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Mass
m

k

Applied force
F(t) = FoCosω0t

The amplitude of the vibrating mass in resonant vibration is:

tSint
m
FtSinctCoscty 0

0

0
0201 2

)( 


 

With the following graphical representation of the amplitude 
fluctuation of the vibrating mass y(t) shown in Figure 8.18:

(8.36)

We notice the peculiar phenomenon from the graphic representation of the solution
in Equation (8.36) for the case in which: 

The frequency of the applied cyclic force (ω)
= the inherited frequency of the mass-spring system (ωo)

The MAXIMUM amplitude y(t) increases CONTINUOUSLY with time t at a rate of (Fo/2mω) 
without limit!  THIS IS THE CASE OF WHAT IS CALLED RESONANT VIBRATION” 
in engineering  analysis.

8.7.2 The Resonant Vibration Analysis (p.267) – Cont’d
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Figure 8.18 Amplitude of a resonant vibration of a solid mass



Time, t

Amplitude, y(t)

0

0

2 m
F

0

0

2 m
F

tf
∆ - Breaking length

of spring
tf -Breaking time

Prediction of time to failure of a mass-spring system in Resonant vibration:
● The amplitude of vibration of the mass y(t) in a mass-spring structure increases 

CONTINUOUSLY with time t (and often in very  steep rates) in a RESONANT  
VIBRATION. 

● The  physical consequence to the structure is the rapid “DEFORMATION” (or   
STRETCHING of the supporting spring in a mass-spring situation.” 

● The attached spring will soon be “stretched” to break when the maximum allowed 
elongation ∆ is beyond the limit of the spring material at time tf (as found in Material’s 
handbook)

● The estimated time of structural failure in resonant vibration of mass-spring system tf
may be obtained as shown in the following graph with tf= the time at which the 
amplitude of vibrating mass reaches the elongation of he spring  ∆= y(tf).

8.7.2 The Resonant Vibration Analysis – Cont’d

∆
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A Well-documented Catastrophic Structural Failure of Tacoma Narrow Bridge 
- A classical case  of structure failure by Resonant Vibration

● The bridge was located in Tacoma, Washington, USA
● Started building on Nov 23, 1938
● Opened to traffic on July 1, 1940

● The bridge was 2800 feet long, 39 feet wide
● A 42 mph wind blew over the bridge in early morning

of November 7, 1940

● The intermittent wind provided an external force with a periodic frequency that 
matched one of the natural structural frequency of the bridge structure that
triggered a “resonant vibration of the bridge sturcture.

● The bridge began to gallop with 
increasing magnitudes

● Eventual structure failure at about 11 AM

No human life was lost. A small dog was perished because he was too scared to run for his life 51



Example 8.9 (p.268) Resonant vibration analysis of a “stamping” machine

Mass, M

Elastic 
foundation

Sheet metal

x(t)

A stamping machine applies hammering forces on 
metal sheets by a die attached to the plunger

The plunger moves vertically up-and-down by a flywheel
spinning at a constant speed.

The constant rotational speed of the flywheel makes 
the impact force on the sheet metal, and therefore the
supporting base, intermittent and cyclic 

The heavy base on which the metal sheet is
supported has a mass M = 2000 kg

The force acting on the base can be described by a function: F(t) = 2000 Sin(10t),
in which t = time in seconds

The base is supported by an elastic pad to absorb the cyclic impact forces with
an equivalent spring constant k = 2x105 N/m

Determine the following if the base is initially depressed down by an amount 0.005 m:
(a) The differential equation for the instantaneous position of the base, i.e., x(t)
(b) Examine if this is a resonant vibration situation with the applied load
(c) Solve for x(t)
(d) Should this be a resonant vibration, how long will take for the support to break

at an elongation of 0.03 m? 52

Figure 8.19



Solution:

The situation can be physically modeled to be a 
mass-spring system:

Mass, m

Applied force,
F(t)

Elastic foundation
= Spring, k

Machine base

Force of the plunger:

Elastic pad

(a) The governing differential equation from Equation (8.31):

tSintxx
dt

txd 102000)(102)(2000 5
2

 (a)

with initial conditions:

x(0) = 0.005 m   and 0)(

0


tdt

tdx (b)

(b) To check if this is a resonant vibration situation:
Let us calculate the Natural (circular) frequency of the mass-spring system in Figure 8.20:

Example 8.9 - Cont’d

sRad
x
x

m
k /10

102
102

3

5

0 

F(t) = 2000 Sin (10t)
ω = 10 Rad/s

We notice the frequency of the excitation force, ω = 10 Rad/s, which is the same as the natural 
frequency of the structure ω0, we thus conclude that it is a resonant vibration of the base structure because
ω0 = ω.

(c)

53
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Figure 8.20



(c) Solution of differential equation in Equation (a):

It is a nonhomogeneous differential equation, so its solution x(t) consists of two parts:

x(t) = xh(t) + xp(t)

By now, we know how to solve for the complementary solution xh(t) in the following form:

tSinctCosctxh 1010)( 21  (d)

Because it is a resonant vibration – a special case for solving non-homogeneous
2nd order differential equations, the particular solution xp(t) will take the form:

)1010()( tSinBtCosAttxp  (e)

By substituting the xp(t) in Equation (e) into the differential equation into Equation (a), 
and comparing terms on both sides, we will have the constants A and B in Equation (c) 
computed as: A = -1/20 and B = 0.

We will thus have the particular solution 
xp(t) = -(t/20)cos10t                                              (f)

By substituting Equations (d) and (f)  into the expression for x(t), we will have the general 
solution of Equation (a) to be:

tCosttSinctCosctxtxtx ph 10
20

1010)()()( 21  (g)

Example 8.9 - Cont’d
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Apply the two specified initial conditions in Equation (b) into the above general solution will 
result in the values of the two arbitrary constants with:c1 = 0.005 and c2 = 1/200

The complete solution of Equation (a) is thus:

(h)

(d) Determine the time to break the elastic support pad:

Since the elastic pad is expected to break at an elongation of 0.03 m, we may determine 
the time to reach this elongation (tf) by the following mathematical expression in Equation (h): 

Solving for tf from the above equation leads to tf = 0.7 sec from the beginning of the 
resonant vibration. A more accurate solution of tf = 0.862s was obtained by using
Newton-Raphson method as will be presented in Section 10.3.2 in Chapter 10.

Time, tA
m

pl
itu

de
, y

(t)

m
F

2
0

m
F

2
0

Graphic representation of x(t) in Equation (h)
is similar to the graph on the right with 
amplitudes increase rapidly with time t.

Physically, the amplitudes x(t) represents 
the elongation of the attached elastic pad
on which the base of the stamping  machine
is attached.  

Example 8.9 - Cont’d
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Example 8.10 (p.270)
A vehicle supported by suspension systems involving coilovers* as illustrated in Figure 8.21. The 
vehicle is rolling over a rough road with wavy road surface that could be described
by a sine function, which results in a cyclic force of F(t) = 1200 Sin(10t) acting on the vehicle.
(* A coilover is a vibration isolator with a damper inside a circular coil spring). 

K = 12000 N/m
C = 1920 N-s/m

m = 120 kg

Sine function for road surface

Response to the following questions:

(a) The appropriate differential equation for the amplitude of vibration of the vehicle mass y(t). 
(b) Solve the differential equation with graphical representation of the solution using the following

initial conditions:
y(0) = 0   and  

  sm
dt

tdy

t

/5
0




(c) What will be the position of the vehicle mass 2 seconds after the initiation of the vibration?
(d) What will happen to the vehicle if the damper loses its function? Given your reason for your   

predicted consequences.
(e) Provide graphical representation of the amplitudes of the vibrating vehicle in the case (d) 

using the same initial conditions stipulated in (b).
56

Figure 8.21 A vehicle travelling on a rough road surface



Solution:
We observe the picture in Figure 8.21 that each vehicle suspension system supports a share of 
vehicle mass that is equal to 120 kg.The appropriate differential equation for the amplitude of the 
vibrating vehicle is expressed following Equation (8.31) to be:

      tSinty
dt

tdy
dt

tyd 101200120001920120 2

2



      tSinty
dt

tdy
dt

tyd 1010100162

2

or (a)

with the initial conditions:   sm
dt

tdy

t

/5
0




y(0) = 0   and (b)

The solution of Equation (a) is obtained by following Equation (8.27) in the form:

y(t)  =  yh(t)   +   yp(t)

where yh(t)  = complementary solution and yp(t) = particular solution

We obtained the complementary from the homogeneous portion of Equation (a) to be:

   tSinctCoscety t
h 66 21

8   (c)

The particular solution yp(t) can be obtained by assuming a form of:

yp(t) = A1 Cos 10t  +  A2Sin10t

in which A1 and A2 are constants to be determined by substituting the above assumed form into 
Equation (a), resulting in A1 = -1/16 and A2 = 0

Example 8.10 – Cont’d
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Thus, the particular solution yp(t) is:  
yp(t) = -(Cos10t)/16 (d)

The general solution of Equation (a) is the summation of expressions in (c) and (d) to be:

    tCostSinctCoscety t 10
16
166 21

8   (e)

In which the two constants c1 and c2 are determined from the specified conditions in Equation (b) to be:
c1 = 1/16 and c2 = 11/12, leading to the solution of Equation (a) to be:

  tCostSintCosety t 10
16
16

12
116

16
18 






   (f)

Figure 8.22 Graphical 
representation of 
solution in Equation (f)

We notice the vehicle had a maximum amplitude of vibration at around 0.25 s after hitting the curved road 
surface, but this excessive amplitude was “damped down” shortly afterward by the dampers inside the coilover 

Example 8.10 – Cont’d
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(c) The amplitude of vibration of the vehicle 2 seconds into the vibration may be solved by letting t = 2 
seconds in Equation (f) resulting in y(2) = Cos 20 (radian)/16 = 0.025 m or 0.25 cm.

(d) Consequence in the case the damper in the coilover ceases to function:

In such case, the vehicle would be supported by the spring in the suspension system only. 
Mathematically, it would mean the damping coefficient c = 0, and hence the disappearance of the 
term dy(t)/dt in Equation (a). Consequently, Equation (a) will have a form:

    tSinty
dt

td
o  102

2

2

 (g)

in Equation (g).   The natural frequency of the mass-spring structure is ωo = 10 rad/s; whereas the 
frequency of the applied force, also is  ω = 10 rad/s. We have situation of resonant vibration of the 
vehicle because ωo = ω = 10 rad/s.

The solution of Equation (g) is obtained by the usual procedure to be: y(t) = yh(t) + yp(t), with:  

  tCosttSinty 10
2

10
20
11

 (j)

Example 8.10 – Cont’d

  tSinctCoscty ooh  21  (h)

The particular solution for this case of resonant vibration will have the particular solution: 

   tAtAtty p  sincos 21  where the constant coefficients A1 = -1/2 and A2 = 0. We thus obtain

the solution of Equation (g) to be:

after using the same initial conditions in Equation (b) in determining the constants c1
and c2 in Equation (h)
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Example 8.10 – Cont’d

(e) Graphic representation of the solution in Equation (j) in the case in which the dampers inside 
the coilovers cease to function – the vehicle is now entirely supported by coil springs only.

We notice a very significant difference in the amplitude y(t) vs time t in both cases by the above
graphic representation for the vehicle to vibrate in RESONANT VIBRATION with its magnitudes
of vibration rising from zero at t=0 to almost 5 m in 10 seconds!! (the spring that supports the vehicle 
would have broken long before reaching that time of 10 seconds!!
The sharp difference in the variation of the magnitudes of vibration with the presence of damper is
Illustrated in the previous case (see the last slide as in Figure 8.22) in which the maximum 
amplitudes never exceed 0.0.6 m after about 0.4 second while the damper remains functioning.
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Figure 8.23 Fast rising of amplitudes of a vibrating vehicle in resonant vibration



8.8 Near Resonant Vibration Analysis (p.273)

Mass
m

Mass
m

k

k

There is little we can do to control the frequency of the applied 
cyclic force to the mass (ω) by the users (or our customers); but 
There are occasions in which the user would apply forces with 
ω ≠ ω0,  but have ω ≈ ω0

F(t)

F(t) Such is the case that we call “Near Resonant” vibration

Because we have the case of ω ≠ ω0 derived before Section 8.7 for the case 
F(t)=F0Cos ωt, we could use the solution obtained for  that case for the present 
case:     tCos

m
FtSinctCoscty 


 22
0

0
0201 
 (8.35)

If we impose the same initial conditions:
y(0) = 0 for initial displacement, and 0)(

0


tdt

tdy for initial velocity,

we would have the arbitrary constants in Equation (8.35) determined to be: 

 22
0

1  


om
Fc and   c2 = 0

The complete solution for the differential equation in Equation (8.35) becomes:

 )()(
)(

)( 22 tCostCos
M

F
ty o

o

o 





 (8.37)

We have learned from the previous section that resonant vibration of mass occurs when:
The frequency of the applies cyclic force to the mass (ω)

= The inhabitant natural frequency of the mass-spring system (ωo)
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By using the expressions for “half-angles” in trigonometry typically learned in high-school math course, the 
Subtractions of two cosine functions in Equation (8.37) may be expressed  in the following form:

    
2
1

2
12 SinSinCosCos

Substituting the above relation into Equation (8.37) will lead to the following expression:

8.8 Near Resonant Vibration Analysis – Cont’d

      



 



 




22
2

)( 22

tSintSin
M

F
ty oo

o

o 
 (8.38)

Because we have ω ≈ ω0 to be the condition of near-resonant vibration, hence ω0 – ω → 0 in 
Equation (8.38), we may make the following approximation  and derive two special relationships:






2

o 




2

oand

in which the circular frequency ε << ω (the frequency of the exciting force)

Consequently, the solution in Equation (8.38) can be expressed as:

)()(
)(

2
)( 22 tSintSin

M
F

ty
o

o 
 










 (8.40)

Graphical representation of Equation (8.40) illustrates vibration in oscillations with “beats”, with:

A
m

pl
itu

de
s,

 y
(t)

Time, t




2
bf to be the frequency of the beats, and












)(

2
)( 22 o

o

M
F

ty to be the maximum 
amplitudes

Near resonant vibration is not usually catastrophic to the structure as does by resonant 
vibration, but it can cause unwanted disturbances and often leads to structure failures 
of structures due to FATIGUE of the material.

(8.39a,b)
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Example 8.11 (p.275):

Mass, M

Elastic 
foundation

Sheet metal

x(t)

The stamping machine in Example 8.9 is used to produce shallow 
metal cups from flat aluminum sheet metals. 

The bench that supports the flat sheet metal has a mass of 1000 
kg and it is bolted to an elastic foundation that has an equivalent 
spring constant k = 25000 N/m. 

A measurement of the stamping force indicated a force function:
F(t) = 1000 Sin(4.95t) applied to the bench with mass M during 
the stamping process. 

Determine the following:

(a) Derive the differential equation and the appropriate conditions that describe the 
instantaneous position  x(t) of the support bench,

(b)  Solve the differential equation for the amplitudes of the vibrating bench x(t),
(c)  Graphically illustrate the amplitudes of the vibrating machine vs. time,
(d)  The maximum deflection of the elastic foundation to which the bench is attached,
(e) Would the elastic foundation break if its maximum allowed elongation is 5 cm 
(f) Estimate the time required to break the elastic foundation should it happen.
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Solution:

(a) According to Equation (8.31), we have the following differential equation with appropriate 
conditions for the present problem:

     tSintx
dt

txd 95.41000250001000 2

2

 (a)

with given initial conditions:

x(0) = 0   and 
  0

0


tdt

tdx (b)

(b) Solution for Equation (a)  with the specified conditions in Equation (b) is:

x(t)  =  -4.02 Cos(4.95t) Sin(0.025t) (c)
(c) Graphical representation of the solution x(t) in Equation (c) obtained by MatLAB software is 

shown in Figure 8.27:
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Example 8.11 – Cont’d:

Figure 8.27 Amplitude of Near-Resonant
vibration of the bench in the 
first 6 seconds: 
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Example 8.11 – Cont’d:

Fig. 8.28  Beats within one cycle
for the near-resonant
vibration of the support
bench

Fig. 8.29 Near-resonant vibration 
of the support bench
with “beats” in each of 
these 3 cycles 

(c) Graphical representation of the solution x(t) in Equation (c) – obtained by MatLAB software
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(d) The maximum deflection of the vibrating machine bench, and thus the maximum 
elongation of the elastic pad of the support foundation is 4.02 m as  
shown in Figures 8.28 and  8.29.

.
(e) Because the maximum elongation of the elastic foundation at 4.02 m has grossly

exceeded the maximum allowed elongation of 0.05 m, so the elastic foundation 
will break.

(f) The time at which the elastic foundation breaks appears to be 0.5 seconds as 
indicated in Figure 8.27.
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8.9 Natural Frequencies of Structures and Modal Analysis (p.277)

We have learned in this chapter that simple structures such as a mass attached to a spring are 
vulnerable to resonant vibration if the frequency of the applied cyclic force (ω) coincides 
with the natural frequency of the mass-spring structure (ω0).  

The consequence of structures, including the simple mass-spring system in resonant vibration 
is very serious with likely immediate structural failure due to rapid amplification of the magnitudes 
of vibration of the structure in such situation. 

To avoid such happening, we need to know the natural frequency of the structure, so that 
we can avoid resonant vibration from happening to the structure by not applying any cyclic 
forces to the structure at frequencies that coincide with any natural frequencies of the structure

Natural frequency of the structure (ωn, with n = 1,2,3,….,n):
Mass

m

Mass
m

k

k

67

In general, a single mass supported by a single spring has ONE natural frequency, and the 
number of natural frequencies of solid structures increases by the increase of number of masses
interconnected by many more elastic bonds.



Natural frequency of the structure (ωn, with n = 1,2,3,….,n) – Cont’d:

8.9 Natural Frequencies of Structures and The Modal Analysis – Cont’d

Now, let us imagine structures made of “real materials” with atoms, or molecules 
supported by “molecular bonds,” as illustrated below: 

We realize that by nature, some molecules 
are made by single atoms and some 
others involve multiple kinds of atoms, and
there are zillions such atoms or molecules
interconnected by chemical bonds in all materials.  
These bonds may be treated as elastic bonds. We 
may thus imagine there are zillions numbers of natural frequencies of structures made of    
real materials that engineers use  in reality. 68



Natural frequency of the structure (ωn, with n = 1,2,3,….,n) – Cont’d:

8.9 Natural Frequencies of Structures and The Modal Analysis – Cont’d

We will further recognize a fact that deformation of solids 
results elongations or contractions of the chemical bonds 
between the atoms or molecules, which produce molecular 
forces as illustrated in Figure 8.30::

These molecular forces in both forms of repulsions and attractions with their magnitudes varying 
according to the distance between their terminals, which exhibit similar ways as the spring forces
that cause the attached masses to vibrate from their equilibrium positions in simple mass-spring 
systems illustrated in previous cases.

Now if we imagine the structure of preferred geometry and sizes that involve zillion number of 
atoms or molecules ( remember the well-known Avogadro’s number defined to be the number 
of molecules contained in 1 mole of any gas or substance to be 6.022x1023?), an elastic 
deformation of these molecular bonds could indeed prompt a “million” ways for their attached 
atoms or molecules  to the free-vibration modes. It is thus not hard for one to imagine that
there are, in theory, millions number of modes for the structure to vibrate, and the number of 
modes of vibration of structure is thus “of MANY, and we may express the “natural frequencies”

associate with each of these modes of vibration to be:  ωn with n = 1,2,3,….,n 
where n designates the mode number. 69

Figure 8.30



MODAL ANALYSIS is a process of determining the natural frequency or frequencies 
of a machine or structure .

For simple mass-spring systems with the mass being attached 
or supported by a single spring, the mass vibrates in 
one-degree-of freedom (because the motion of the 
mass is prompted by a single spring force)

One degree-of-freedom system has only ONE MODE of 
natural frequency – one natural frequency, ω0  with

For structures of complex geometry subjected to complex loading, there exists an
infinite (∞) degree-of-freedom, and thus infinite number of natural frequencies –
calling Mode 1, 2, 3, ………..natural frequencies, expressed by: ωn: ω1, ω2, ω3, .ω∞

Every effort should be made not to apply any intermittent cyclic forces with frequency 
coinciding ANY of the natural frequency in any mode of the structure

MODAL ANALYSIS (p.279) 
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 
 m
k

n  with mode number n = 1, 2, 3, ….,n

where [k] and [m] are respective “stiffness matrix” and “mass matrix” of the structure.
These matrices are obtained by numerical analyses, such as finite element stress 
analysis described in Chapter 11.
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